Underestimation of ammonia‐oxidizing bacteria abundance by amplification bias in amoA‐targeted qPCR

نویسندگان

  • Arnaud Dechesne
  • Sanin Musovic
  • Alejandro Palomo
  • Vaibhav Diwan
  • Barth F Smets
چکیده

Molecular methods to investigate functional groups in microbial communities rely on the specificity and selectivity of the primer set towards the target. Here, using rapid sand filters for drinking water production as model environment, we investigated the consistency of two commonly used quantitative PCR methods to enumerate ammonia-oxidizing bacteria (AOB): one targeting the phylogenetic gene 16S rRNA and the other, the functional gene amoA. Cloning-sequencing with both primer sets on DNA from two waterworks revealed contrasting images of AOB diversity. The amoA-based approach preferentially recovered sequences belonging to Nitrosomonas Cluster 7 over Cluster 6A ones, while the 16S rRNA one yielded more diverse sequences belonging to three AOB clusters, but also a few non-AOB sequences, suggesting broader, but partly unspecific, primer coverage. This was confirmed by an in silico coverage analysis against sequences of AOB (both isolates and high-quality environmental sequences). The difference in primer coverage significantly impacted the estimation of AOB abundance at the waterworks with high Cluster 6A prevalence, with estimates up to 50-fold smaller for amoA than for 16S rRNA. In contrast, both approaches performed very similarly at waterworks with high Cluster 7 prevalence. Our results highlight that caution is warranted when comparing AOB abundances obtained using different qPCR primer sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitrifier Gene Abundance and Diversity in Sediments Impacted by Acid Mine Drainage

Extremely acidic and metal-rich acid mine drainage (AMD) waters can have severe toxicological effects on aquatic ecosystems. AMD has been shown to completely halt nitrification, which plays an important role in transferring nitrogen to higher organisms and in mitigating nitrogen pollution. We evaluated the gene abundance and diversity of nitrifying microbes in AMD-impacted sediments: ammonia-ox...

متن کامل

Community dynamics and activity of ammonia-oxidizing prokaryotes in intertidal sediments of the Yangtze estuary.

Diversity, abundance, and activity of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were investigated using the ammonia monooxygenase α subunit (amoA) in the intertidal sediments of the Yangtze Estuary. Generally, AOB had a lower diversity of amoA genes than did AOA in this study. Clone library analysis revealed great spatial variations in both AOB and AOA communities alo...

متن کامل

Distribution of Ammonia-Oxidizing Archaea and Bacteria in the Surface Sediments of Matsushima Bay in Relation to Environmental Variables

Ammonia oxidization is the first and a rate-limiting step of nitrification, which is often a critical process in nitrogen removal from estuarine and coastal environments. To clarify the correlation of environmental conditions with the distribution of ammonia oxidizers in organic matter-rich coastal sediments, ammonia-oxidizing archaea (AOA) and bacteria (AOB) ammonia monooxygenase alpha subunit...

متن کامل

Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations.

The ammonia-oxidizing and nitrite-oxidizing bacterial populations occurring in the nitrifying activated sludge of an industrial wastewater treatment plant receiving sewage with high ammonia concentrations were studied by use of a polyphasic approach. In situ hybridization with a set of hierarchical 16S rRNA-targeted probes for ammonia-oxidizing bacteria revealed the dominance of Nitrosococcus m...

متن کامل

Low-ammonia niche of ammonia-oxidizing archaea in rotating biological contactors of a municipal wastewater treatment plant

The first step of nitrification is catalysed by both ammonia-oxidizing bacteria (AOB) and archaea (AOA), but physicochemical controls on the relative abundance and function of these two groups are not yet fully understood, especially in freshwater environments. This study investigated ammonia-oxidizing populations in nitrifying rotating biological contactors (RBCs) from a municipal wastewater t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016